INTERTIDAL ZONE-FORMATION IN POMATOLEIOS KRAUSSII (ANNELIDA: POLYCHAETA) ${ }^{1}$

DALE STRAUGHAN ${ }^{2}$
Hazcaii Institute of Marine Biology, Uniz'ersity of Hazeaii, Kaneoke, Hazvaii 96744

Pomatoleios kraussii forms a well-defined intertidal zone in many areas of its Indo-Pacific distribution (for details of this distribution see Straughan, 1967a). However, Straughan (1968) noted that this species settles and survives subtidally, and in artificial habitats (for example water cooling systems) that are continually submerged. Hence the intertidal distribution of Pomatoleios is not the result of differential larval settlement. The following study was designed to determine the factors contributing to the formation of an intertidal zone low Pomatoleios in Hawaii.

Physiography

Coconut Island is situated in Kaneohe Bay on the northeastern (windward) coast of the island of Oahu $\left(21^{\circ} 26^{\prime} \mathrm{N}, 157^{\circ} 48^{\prime} \mathrm{TV}\right)$. It is a small, partially artificial island surrounded by a reef flat of mainly dead coral. Experimental studies were conducted on the protected side of the island-furthest from the open sea.

Temperature

Over a one year period, May 1967 to May 1968, surface water temperatures varied between 19° and $28^{\circ} \mathrm{C}$, and remained above $25^{\circ} \mathrm{C}$ from May to October (Bathen, 1968).

Salinity

A number of streams discharge into Kaneohe Bay. During wet winter months, and particularly following heavy rain, the bay fanna is exposed to salinities somewhat lower than normal seawater. Bathen (1968) reported salinities of 35 to 36% o for eight months of the year with a minimum salinity of 31% in November.

Waler movement

Surface currents across the reef and inshore of the island are dependent on tide and wind. Bathen (1968) reported that the north-northeast Trade Winds increase surface currents on rising tides and decrease currents on falling tides; whereas the southern Kona Winds (November through April) may have the reverse effect. The tides are mixed but the days on which there is only one tide are limited to two or three a month.
${ }^{1}$ Contribution No. 324 from the Hawaii Institute of Marine Biology.
${ }^{2}$ Present address: Allan Hancock Foundation, University of Southern California, University Park, Los Angeles, California 90007.

Northeast Trade Waves (4 to 12 feet high) enter Kanehoe Bay for 90 to 95% of the time during summer and 55 to 60% of the time during winter. At other times during winter, the North Pacific Sivell (8 to 14 feet high) predominates (Moberly and Chamberlan, 1964). During the present study, the latter commenced to influence the effective sea level on September 17 when the surf level rose on the north shore of Oahu (Dr. Jeannette Whipple Struhsaker, personal communication). Although this effect is damped in the Bay, a rise in effective sealevel is still evident during October. The theoretical Mean Sea Level is 1.0 to 1.2 feet above Datum.

Material and Methods

Temperature

Recorded by continually exposed maximmm-minimum thermometers (accurate to $0.2^{\circ} \mathrm{C}$) placed at the same level as intertidal populations of Pomatolcios on both the eastern and western sides of Stations C and G. Hence they recorded hoth water and air temperatures to which the population was exposed.

Salinity

Measured periodically with a refractometer accurate to 0.5%.

W'ater movement

Surface water currents were ganged timing floats over measured distances, under calm conditions, at midflood and midebb of the tide when the tidal ranges were 1.6 feet and 1.8 feet, respectively. Measurements were made at inshore and reef flat stations.

Distribution and abundance of Pomatoleios

A. Distribution around the coast of Oahu: In June and July the following localities were surveyed for Pomatolcios: Kaluka, Koko Head, Black Point, Kewalo Basin, Nanakuli, and Maille Point, as well as Coconut Island. These localities were selected as being representative of all types of intertidal habitats found on Oahus.
B. Distribution and abundance across the Coconut Island Reef: Seven Stations A through G were selected along a straight line transect from the shore (Station A) to the reef edge (Station G). The density of Pomatolcios was estimated from direct counts of tubes at each station. Separate estimates were made for the eastern (facing flood tidal current) and western (facing ebl tidal current) sides of each station. Two inch I beam steel stakes at Stations C, F, and G provided suitable substrate extending beyond the normal vertical range of Pomatoleios in both directions. At Station A the cement wall extended above this range only. The available surfaces on coral boulders at Stations B, D, and E were entirely within this range. At the same time, the abundance of the barnacle Balanus hazailensis Brock; the oysters Ostrea sandvichensis Sowerby and O. gigas (Thmberg): vermetid molluscs, the ascidians Didcmutn candidum Savigny, Trididemnun profundum (Sluiter), Symplegma sp., Botrilloides sp.; and algae
were recorded at all stations. The initial survey was made between June 24 and 28 and the final survey was made on October 21.

Laral settlement

Fouling plates $(80 \times 100 \mathrm{~mm})$ motnted vertically at intervals of 1.5 inches, 12 to a frame, were placed at an inshore Station C and reef edge Station G two or 14 days before predicted larval settlement. (For details of the frame structure see Straughan, 1967b). The following types of plates and corresponding strfaces were mominted in two duplicated series per frame.
Clear glass
Ground glass
Black smooth glass
Black smooth glass
Black bakelite (used as standard Plate)

Asbestos cement \quad Side 1
\quad Side 2

> smooth, light, transparent rough, dark, transparent
> smooth, dark, transparent
> rough, dark, transparent smooth, dark, opaque smooth, light, opaque pitted, light, opaque

Standard black bakelite plates mounted at an angle of 60° to horizontal were placed at both Stations two days before predicted settlement.

At Station C, 12 standard black bakelite plates were mounted horizontally 1.5 inches apart with the uppermost plate 11 inches above datum. This series was examined every 14 days from July 9 to October 25. On October 1 a second series of 12 plates was added 1.5 inches above the original series.

Spacing within populations of different densities was examined using distance to nearest neighhor as a measure of spatial relationships after the method of Clark and Evans (1954). The ratio (R) of observed mean distance between points of a population to the expected mean distance between points of a randomly distributed population serves as a measure of departure from randomness. In a random distribution, $\mathrm{R}=1$. Under conditions of maximum aggregation $\mathrm{R}=0$. Under conditions of maximum spacing $R=2.1491$.

Survizal
At low salinities: 50 adult specimens of Pomatolcios were placed in 2 gallon aquaria containing aerated water of salinities of 0% and 31% for varying periods before being returned gradually to seawater. The number of surviving animals was counted after 1 hour in seawater (salinity 35.5%).

Under conditions of sand accumulation: 16 equal populations of established juvenile Pomatolcios were placed so that half were in positions free of sand and half in positions of sand accumulation. Survival in both series was determined after 14 days.

At high intertidal levels: In July established populations of 65 and 63 adtult Pomatolcios were placed above the level of the Pomatoleios zone at Stations G (reef edge) and C (inshore) respectively, so that they were above the upper limit of settlement for that month hut within the range of October settlement. Equal populations of adult Pomatolcios within the settlement range for July were used as controls. In all cases 50% of the population was on upper surfaces.

With "competition for space": The Spearman rank correlation coefficient
(Seigel, 1956) was used to show any association between the relative abundances of compound ascidians and Pomotoleios. The percentage of each fouling plate covered by compound ascidians per 14 days was compared with the survival of Pomatolcios on that surface.

Results and Observations

Distribution and abundance of Pomatoleios

A. Distribution around the coast of Oahn: Althongh many of the 12 species of the sulb-family Serpulinae recorded from Oahu, were widely distributed around the island, Pomatolcios was found only in sheltered areas within Kaneohe Bay. The other localities visited were on the open coast and exposed to wave and surf action. Pomatoleios may also occur in Pearl Harbor where sheltered conditions similar to those in Kaneohe Bay exist. This area was not surveyed because of United States Nary restrictions. However, the high level of pollution in the Harbor may exclude Pomatolcios.
B. Distribution and abundance across the Coconut Island Reef in Kaneohe Bay: The following physical factors might contribute to limiting distribution and

Figure 1. - = predicted percentage of days that 1.0 and 1.4 foot levels were submerged for part of the day; ———— predicted percentage of hours that each level was submerged; - - - percentage of Pomatoteios settling on top 4 plates ($=$ Pomatolcios zone) of the original 12 plate series, from July to October inclusive. Predictions were made from Tide Tables.
abundance of Pomatolcios; 1. Frequency and period of submergence, 2. Water movement, 3 . Salinity, and 4 . Temperature.

If other effects are ignored, the frequency and duration of submergence of a given level above datunn can be predicted from tide tables. There is a gradual increase in the predicted frequency of subnergence of the 1.0 foot and 1.4 foot levels from Jutly to October (Figure 1). In July, the level of minimum High Water Spring (Min.H.WV.S.) (that is, the highest level that is submerged every day) is 1.0 feet, while in September and October it is 1.4 feet. That is, in October, the predicted frequency that the 1.4 foot level is submerged equals that predicted for the 1.0 level in July, i.e.. once a day.

In July, the 1.0 foot level should be submerged 35% of the time, while in October, the 1.4 foot level should be submerged 31% of the time. On calm days during October, the tide remained above the predicted level although the tides approximated closely the predicted level in July. The rise in effective sea level was sufficient to increase the predicted time of subnergence of 1.4 foot level in October to approximately that of the 1.0 foot level in July. This change most markedly affected larval settlement but also was responsible for changes in abundance.

Tidal current velocities inshore were 0.083-0.125 meters per second east to west on the flood tide, and 0.0415 meters per second west to east on the ebb tide. Current velocities on the reef flat were $0.25-0.3$ meters per second east to west on flood tide and 0.09 meters per second west to east on the ebl tide. Therefore reef flat stations were exposed to currents of 2 to 3 times the velocity of those at inshore stations. Since the inshore stations are more sheltered from the northnortheast Trade Winds, the expected difference in current velocities would be greater during periods of trade wind influence. The eastward side of objects is always exposed to currents moving at a higher velocity than is the westward side.

Salinity remained close to that of normal seawater ($35-36 \%$) throughout the survey except following heavy rain on September 1 and October 1. On each occasion salinity dropped to 31.5% on the surface at Station C for no longer than 2t hours. No resulting mortality was observed and experiments showed that adult specimens of Pomatoleios can survive at least 17 hours in freshwater (0%) and 30 hours at a salinity of 31%.

Temperatures were recorded on both the eastern and western sides of inshore Station C and reef edge Station G. A temperature range of 23 to 30° was recorded within the intertidal range of Pomatolcios at all sites. Therefore, animals exposed to the afternoon sun (western side) were subjected to similar upper temperature extremes as those exposed to the morning sun (eastern side). Inshore Station C is possibly exposed to higher water temperatures than the reef edge Station G because water flows over shallow reef flat areas before reaching C, while it flows from deeper areas to G.

While Pomatoleios was recorded at each of Stations A to G in June, the population was more abundant at Station C (12.0/sq inch) than at the other stations (Table I). At Station C, it occurred from 4 inches below datum to 11 inches above datum and at the top of this range formed a zone 4 to 5 inches wide.

Pomatolcios occurred up to a higher intertidal level and was more abundant at inshore Stations (A and C) than at reef flat or reef edge Stations (F and G) (Table I). At Station C, Pomatoleios extends to a higher level on the western
side (11 inches above datum) which is exposed to low velocity water currents, than the eastern side (9.5 inches above datum) which is exposed to high velocity water currents. At Station 13, Pomatolcios was more abundant on surfaces

Table I
Details of distribution and abundance of Pomatoleios and general distribution and abundance of other organisms at Stations A to G

Station	Range in inches	Individuats per inch	Algae	Balanus	Ostrea	Vermetid	Ascidian
Station A (concrete wall) SIP	-2.0 to 15.0	2.5					
	-4.0 to 1.5 -4.0 to 4.5 -2.0 to 3.5^{*} -1.0 to 4.0	$\begin{aligned} & 0.625 \\ & 0.925 \\ & 0.725 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mathrm{XX} \\ & \mathrm{X} \\ & \mathrm{XX} \\ & \mathrm{X} \end{aligned}$				
Station C (iron stake) EIP WIP	$\begin{aligned} & \text { above } 9.5 \\ & 5.5 \text { to } 9.5 \\ & 0.0 \text { to } 5.5 \\ & -4.0 \text { to } 0.0 \\ & \text { above } 11.0 \\ & 6.0 \text { to } 11.0 \\ & 0.0 \text { to } 6.0 \\ & -4.0 \text { to } 0.0 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 12.0 \\ & 0.24 \\ & 0.125 \\ & 0.0 \\ & 7.0 \\ & 0.24 \\ & 0.125 \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{XX} \\ & \mathrm{X} \\ & \mathrm{XX} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	N X	X
Station D (dead coral boulder) EFU WFL	$\begin{array}{ll} 0.0 \text { to } 5.0 \\ 0.0 \text { to } 5.0 \end{array}$	$\begin{aligned} & 0.375 \\ & 0.25 \end{aligned}$	NX		X		
Station E (dead coral boulder) EFL EFU WFU	$\begin{aligned} & 0.0 \text { to } 3.0 \\ & 0.0 \text { to } 3.0 \\ & 0.0 \text { to } 3.0 \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0.5 \\ & 0.25 \end{aligned}$	X	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$		$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	
Station F (iron stake) EFP WFP	above 5.0 2.0 to 5.0 above 5.0 2.0 to 5.0	$\begin{aligned} & 0.0 \\ & 0.5 \\ & 0.0 \\ & 0.25 \end{aligned}$	XX	$\begin{aligned} & \mathrm{XX} \\ & \text { XX } \\ & \text { XX } \end{aligned}$			
Station G (iron stake) ERP WRP	$\begin{aligned} & \text { above } 6.5 \\ & -2.0 \text { to } 6.5 \\ & \text { above } 6.5 \\ & -2.0 \text { to } 6.5 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.06 \\ & 0.0 \\ & 0.0 \end{aligned}$		$\begin{aligned} & \mathrm{X} \\ & \mathrm{XX} \\ & \mathrm{X} \\ & \mathrm{XX} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$		

S-surface facing south
E-surface facing east
F -reef flat station
R -reef edge station
W-surface facing west
I-inshore station

U - upper surface
P -perpendicular surface

L-lower surface
X -present on surface
XX -dominant on surface

* - sheltered by other side oi drum
sheltered from water currents than on those exposed to water currents. That is, Pomatolcios is most abundant and extends to the highest intertidal levels at sites that are exposed to low water currents.

At Station A, Pomatoleios occurred from 2 inches below datum to 10 inches above datum on smooth surfaces, and to 15 inches above datum on creviced surfaces. Further at Station D, a coral boulder entirely within the Pomatolcios range, Pomatolcios occurred in crevices and not on outer surfaces. In the latter case. shelter from sand abrasion as well as shelter from water currents is probably a limiting factor.

At E where the boulder had relatively flat surfaces, in the absence of sand, Pomatolcios was more abundant on a lower surface than on an upper surface. Both surfaces faced the same direction and bore similar densities of other species. On the western surface where sand as well as algae occurred, Pomatolcios was less abundant than on the eastern surface.

At Station A, although Pomatoleios was not abundant (density 2.5 per sq inch), it was the dominant sedentary species throughout its range. At Station C below the Pomatolcios zone but above datum, algae, Bulamts, Ostrca, vermetids, and compound ascidians were common, while below datum, algae was abundant. There is an increase in Balamus abundance from the inshore Station C to the reef flat Station F and the reef edge Station G. At Stations B, C, D, E, F, the density of Pomatolcios decreases where the algal abundance increases. Therefore, water currents, sand, and algae probably effect the distribution and abundance of Pomatolcios.

In October, the only change in the distribution of Pomatolcios was its presence (density $=0.25$ per sq inch) in a band 5 inches wide above the Pomatolcios zone at Station C. At Stations C, F, G, compound ascidians were abundant up to 5 inches above (latum while algae (predominantly a species of Ulwa) formed a zone 5 inches wide above this. The abundance of algae at Stations B, D, and E also had increased. Hence at C the compound ascidians now extended to the bottom of the Pomatolcios zone while the algae extended over the Pomatolcios zone. Therefore, the rise in effective sea level between July and October, is reflected in the rise in the intertidal distribution of Pomatoleios, compound ascidians, and algae.

Larval settlement

Pomatolcios larvae settled during periods of spring tides throughout the study. Larval settlement was abundant during July, almost ceased during August and increased again during September and October. Unpublished data from other areas indicates that breeding ceases during the winter months at water temperatures of $23^{\circ} \mathrm{C}$ and below. There was a green algal bloom in the study area co-incident with the Angust reduction in larval settlement. At this time, few Pomatoleios adults in the study area contained mature genital products, while those kept in the laboratory contained mature genital products.

Sand accumulated rapidly and algae grew quickly on newly exposed surfaces. Therefore, to compare larval settlement on different types of surfaces, the surfaces were exposed within a few days of predicted larval settlement while to study the effects of sand and/or algae on larval settlement, surfaces were exposed 14 days before predicted larval settlement.

Larval settlement of I'omatoleios on horizontal fouling plates (Station C, July 9 to Angust 6) is shown in Figure 2. Larval settlement was more abundant below the Pomatoleios zone ($=\mathrm{top}$ four plates of July) than within this zone and extended below the lowest level of living Pomatoleios. In October, larvae settled on plates from 0.5 to 1.4 feet above datum. That is, in July the larval settlement range extended below the adult survival range while in October the larval settlement range extended above the adult survival range. This rise in larval settlement range parallels the rise in effective sea level between July and October.

Figure 1 shows that there was a gradual increase in the percentage of larvae settling within the Pomatoleios zone from July to October. The biggest increase in percentage of larvae settling within the Pomatolcios zone occurred in September. In September, the percentage of days that the Pomatoleios zone was submerged, rose to 100%. This suggests that frequency of submergence is more important than

Figure 2. Pomatoleios settlement on 12 plates placed at the heights indicated during July. Number Pomatoleios on the above plates at the end of October and settlement on fouling plates placed above them during October.

Figure 3. Number of larvae settling on fouling plates exposed at different angles. (0°-under surface; 90°-perpendicular; 180°-upper surface). Pomatolcios and Ostrca are plotted on the lower scale and Balanus on the higher scale.
overall percentage of time submerged in limiting the upper level of larval settlement.

Pomatoleios larvae did not settle evenly over the surface of fouling plates. In low density populations (density $=0.35 \pm 0.03$ per sq cm), individuals were randomly spaced $(\mathrm{R}=0.93 ; 0.88)$, while in higher density populations (density 0.6 per sq cm$)$, they were aggregated $(\mathrm{R}=0 .+17)$.

At Station A, larval settlement extended to a higher level on rough concrete than on smooth concrete. At Station C, experiments using fouling plates with different types of surfaces showed that larval settlement was also more abundant on a rough surface than on a smooth surface, and on a dark surface than on a light surface (Table 1I). Settlement on an evenly pitted surface did not differ from

Table II
Density (x per sq cm) Pomatoleios settlement on different types of surface

	Light transparent	Light opaque	Dark transparent	Dark opaque
Smooth	$0.125 \quad 0.25$	0.375	0.375	$1.125-1.625$
Evenly pitted		0.375		
Rough	0.5		2.0	

settlement on a smooth surface. Of the surfaces tested, larvae settled most abundantly on a dark, rongh, transparent surface. However, this type of surface was not compared with a dark, rough, opaque surface which is probably even more suitable for larval settlement.

In Figure 3, larval settlement on fouling plates exposed at different angles at the same height above datum, is compared. Pomalolcios settlement was most abundant on the molerside of objects $\left(0^{\circ}\right)$, and decreased with increasing angle until hardly any settlement occurred on the upper surface of objects. Of the other common intertidal species that may compete with Pomatolcios, Balamts larvae settled most abundantly on the upper surfaces (180°) and settlement decreased with decreasing surface angle. Ostrca larvae settled most abundantly on vertical surfaces but settlement was more abundant on the lower than the upper surfaces.

Table III
Number of larvae settling on fouling plates

Species	Reef edge		Inshore	
	Exposed	Sheltered	Exposed	Sheltered
Pomatoleios	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 12 \\ 9 \\ 13 \\ 14 \end{array}$
Balanus	$\begin{array}{r} 56 \\ 105 \\ 104 \\ 60 \end{array}$	$\begin{aligned} & 25 \\ & 77 \\ & 48 \\ & 17 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Ostrea	$\begin{aligned} & 43 \\ & 84 \\ & 21 \\ & 16 \end{aligned}$	$\begin{array}{r} 20 \\ 46 \\ 15 \\ 9 \end{array}$	$\begin{aligned} & 8 \\ & 0 \\ & 5 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$

Comparison of settlement of Pomatolcios, Balamus, and Ostrea on vertical fouling plates under conditions exposed to and sheltered from water currents at Station C (inshore) and Station G (reef edge) is made in Table III. Pomatoleios larvae settled more abmindantly on inshore than reef edge fouling plates, and more abundantly on sheltered than exposed surfaces. In contrast, Balamus and Ostrea larvae settled more abundantly on reef edge than inshore fouling plates, and more abundantly on exposed than on sheltered surfaces. Therefore, there appears to be very little, if any, competition for space during larval settlement between Pomatoleios and Balamus and Ostrea larvae.

It is difficult to separate the effect of some physical factors on larval settlement, for example, current velocity and sand, and current velocity and presence of an algal mat. The latter at two weeks is composed of short algal species which trap some sand, and has a maximum thickness of 0.5 mm. In Table IV, the density of larval settlement under these varying conditions is tabulated. Situations where algae was absent and where sand was common, were always sheltered from the
current, that is, alternatives " a " and " a_{1} " did not exist. No settlement occurred in high current velocity conditions, while under low velocity conditions, settlement was more abundant in the absence than presence of sand and the algal mat.

Survizal

It was noted in the initial survey in July, that the adult population is more abundant in the absence than presence of sand and/or algae and (above) that larval settlement is similarly effected. When sand accumulated after larval settlement a 25% mortality was recorded in six weeks. However, when established juveniles that settled in positions sheltered from sand, were placed in positions where sand accumulated, the mortality in two weeks was greater than that recorded annong specimens that settled on the sandy side. Mortality also increased with the increasing accumulation of sand. (Thin layer of sand- $25-37 \%$ mortality : 0.5 mm sand layer- 34% mortality ; 1.0 mm sand layer- 56% mortality.)

Table IV ${ }^{\top}$
Density (x per sq cm) Pomatoleios settlement on fouling plates exposed to currents of high and low welocities, in presence and absence of sand and algal mat

Current	Sand		Algal mat	
High velocity	0.0	Present*	Absent	Present
Low velocity	1.625	a	a_{1}	0.0

* 0.5 mm thick in 2 weeks.

Conditions represented by a, a did not exist.

While the upper limit of larval settlement in July was the top of the Pomatoleios zone, it was possible that the more tolerant adults could survive at a higher intertidal level. However, when specimens were placed above the Pomatoleios range, at the reef edge (Station G), all (65) were destroyed by crabs in four weeks. Inshore (Station C), crabs destroyed 20% of the specimens above the Pomatolcios range but none within the Pomatolcios range. At the higher level, none of the remaining tubes on the upper surfaces contained living specimens of Pomatoleios, while 50% of the tubes on the lower surfaces contained living specimens of Pomatolcios. There was a 95% survival of specimens on upper and lower surfaces within the Pomatolcios zone. At these mortality rates, Pomatolcios could not survive above the Pomatoleios zone over the summer months. That is, larvae settling above the Pomatolcios zone at C during October, could not survive the following summer.

Allan Miller in a study of the feeding habits of Mormla, found that M. granuluta will prey on Pomatolcios (personal communication). However, M. gramulata is most abundant in the upper intertidal areas on the exposed coast and it was not collected from the sheltered inshore areas where Pomatoleios was most abundant. Hence predation by M. granulata was prohably marginal.

Although Balanus and Ostrea larvae settle least abundantly where Pomatoleios settle most abindantly, they, as well as vermetids, possibly compete for space with Pomatoleios after settlement. While Balanus attained a density of up to $1 / 10$ sq $n m$ in four weeks, it did not catuse any observable mortality within the Pomatoleios population. Ostrea and vermetids were less abundant than Balamus and coexisted with Pomatoleios in the marginal areas of the Pomatolcios range. Following the green algal bloom in carly August, Balamus and Ostrea mortality was 75% while no Pomatoleios mortality occurred on fouling plates.

Several species of colonial ascidians grew rapidly in the subtidal and lower intertidal areas. The level at which colonial ascidians were common rose from 0.1 feet below datum in July, to 0.1 feet above datum in August, to 0.4 feet above datimm in September, to 0.6 feet above dattm in October on horizontal fotvling plates. On vertical surfaces, colonial ascidians only extended to 0.4 feet above datum in October.

A comparison of the area covered by colonial ascidians and Pomatoleios survival, shows that Pomatoleios survival decreases as the area covered by colonial ascidians

Table V
Pomatoleios survival with increasing ascidian competilion per 2 weeks
$\left.\left.\begin{array}{cc}\text { Area occupied by ascidian } \\ (\%)\end{array}\right) \begin{array}{c}\text { Pomatoleios survival } \\ (\%)\end{array}\right]$
increases (Table V). Using the Spearman Rank Correlation Coefficient (Siegel, 1956), $\mathrm{r}=-0.785$. This negative correlation is significant between 0.05 and 0.01 levels for a one tailed test. Pomatolcios mortality on the lower ten fouling plates (-0.5 to +0.6 feet) between July and the end of October (Fig. 3), was the result of competition from colonial ascidians.

As the effective sea level rose from July to October, the upper limit of the colonial ascidians rose and extended to the bottom of the Pomatoleios zone at C in October. Therefore during autumn, colonial ascidians compete for space with Pomatoleios that settled below the Pomatoleios zone during summer. Hence the lower level of the Pomatolcios zone at C was controlled by competition with colonial ascidians.

Discussion

Pomatoleios forms a narrow well-defined zone in sheltered intertidal areas. However, its survival range extends subtidally and the larval settlement range
extends intertidally above the survival range during autumn and subtidally below the survival range during summer.

Lewis (1964, p. 217) states "it nevertheless appears from comparisons of many shores that wave action is primarily responsible for raising zonal boundaries, especially those of the upper shore where it is a matter of raising the theoretical height of the sea." While he was referring to localities exposed to different amounts of wave action, the present species shows a seasonal change in larval settlement height due to seasonal influence of the North Pacific Swell, trade winds, and changes in the predicted submergence at different levels. In this case, where the maximum tidal range is 3.0 feet, a shift in tidal levels of 0.4 to 0.6 feet effects a large portion of the intertidal environment. Pomatolcios settlement range changed seasonally as did the position of Min.H.W.S. (position that is submerged at least once a day) which is higher during autumn and spring than during summer and winter. In spring and autumn, most larvae settle within the Pomatoleios zone, while in summer, settlement is most abundant below the Pomatolcios zone. Settlement ceases during winter.

While the Pomatolcios settlement zone is higher on the shoreline in October than July, so is the distribution of algae and ascidians. The ascidians extend to the bottom of the Pomatoleios zone during October and kill specimens of Pomatoleios that settled below the Pomatoleios zone in summer. Algae extend into the lower Pomatoleios zone but do not affect specimens of Pomatoleios already present. However, continuous algal movement and accumulation of sand reduce larval settlement. Larvae which settle above the Pomatoleios zone during spring and autumn are reduced in numbers during summer and winter. They are attacked by crabs, exposed to air for long periods when the level of Min.H.W.S. falls, and are exposed to low salinities.

Connell (1961, p. 722) states that "the lower limit of distribution of intertidal organisms is mainly determined by the action of such biotic factors as competition for space or predation. The upper limit is probably more often set by physical factors." In Pomatoleios, while exposure to physical factors was important in limiting the upper level of the population, predation by crabs was also an important factor. No predation was recorded at lower intertidal levels where the population appeared to be limited entirely by seasonal competition for space with colonial ascidians.

Lewis (1964, p. 230) states "It is important, however, to appreciate that although larval discrimination is an important and perhaps necessary adaptation to zonation, it does not explain zonation." However, larval discrimination during settlement may be more important in the Serpulinae than in other groups of zone forming species. Mercierella enigmatica, another zone forming serpulid, is also known to aggregate during larval settlement (Straughan, unpublished). Both these serpulid species are able to build their tubes in any direction so that intraspecific competition for space is not as important as in species where shape and size are less variable, for example, barnacles and spirorbids. At high population densities, the former form unstable communities that are easily dislodged by wave action, while the latter space themselves out during settlement (Knight-Jones and Moyse, 1961). Hence aggregation during settlement is probably more important in building up a zone in the Serpulinae than in groups where intraspecific competition
for space occurs at high population densities; it reinforces the effect of differential survival of the adults.

Velocity of waterflow over the substrate, type of exposed surface (texture light, and color), and angle at which the surface is exposed, are factors effecting settlement at all deptlis. The fact that larvae did not differentiate between the surface with large even pits and a smooth surface, but showed a definite preference for a rough surface, suggests that the latter was preferred because it enabled firmer tube attachment.

This work was carried out while the author was the holder of an American Association of University Women Fellowship. The author is grateful to the personnel of the Hawaii Institute of Marine Biology for assistance with the project, to Jim McVey for identifying the ascidian material, and to Dr. Ian Straughan for assistance with the manuscript.

Summary

Pomatoleios kraussii forms an intertidal zone which extends from 0.5 to 0.9 feet above datum in the sheltered areas of Kaneohe Bay. The settlement range which extends subtidally, is wider than the adult survival range which in turn is wider than the Pomatoleios zone. The settlement range moves up and down the shore corresponding to seasonal changes in the level of minimum High Water Springs. The Pomatoleios zone is limited at the top by exposure to air and predation, and at the bottom by competition for space. Habitat selection within the settlement zone is influenced by surface texture, surface angle, exposure to currents, presence of sand and algae. Competition for space with Balamis, Ostrea, and vermetids is largely eliminated by different larval settlement preferences in these species.

LITERATURE CITED

Bathen, K. A., 1968. A descriptive study of the physical oceanography of Kaneohe Bay, Oahu, Hawaii. Hazeaii Inst. Mar. Biol. Tech. Rep., No 14.
Clark, P. J., and F. C. Evans, 1954. Distance to nearest neighbour as a measure of spatial relationships in populations. Ecology, 35: 445-453.
Connell, J. H., 1961. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology, 42: 710-723.
Knight-Jones, E. W. and J. Moyse, 1961. Intraspecific competition in sedentary marine animals. Symp. Soc. Exp. Biol., 15: 72-95.
Lewis, J. R., 1964. The Ecology of Rocky Shores. English Universities Press, London, 323 pp.
Moberly, R., and T. Chamberlain, 1964. Hawaiian Beach Systems. Hazvaii Institute of Geophysics Report: HIG -64-2.
Siegel, S., 1956. Nonparamctric Statistics of the Behavioural Sciences. McGraw Hill, New York, 312 pp.
Straughan, D., 1967 a. Marine Serpulidae (Annelida: Polychaeta) of Eastern Queensland and New South Wales. Australian J. Zool. 15: 201-261.
Straughan, D., 1967 b. Intertidal fouling in the Brisbane River, Queensland. Proc. Roy. Soc. Quecnsland, 79:25-40.
Straughan, D., 1968. Ecological aspects of serpulid fouling. Australian Natur. Hist.. 16(2): 59-64.

